A simple multibody system on a discrete circle

Chengyang Qian Yaokun Wu

School of Mathematical Sciences Shanghai Jiao Tong University

G2R2, 18 August 2018

Table of Contents

1 Partition System

Prom partition system to point configuration

\bigcirc How to understand a set of $(0,\pm 1)$ -vectors

Our results

Qian, Wu (SJTU)

Pointless graphs,

- ab|cd|ef|gh,
- ad|beh|f|cg.

Circular partition,

$$X = \mathbb{Z}_8$$
,

- 12|345|67|8,
- 81|2|34|567,
- 812|34|56|7.

Perfect phylogeny,

- abc|def|g,
- ad|b|c|g|ef,
- ag|b|c|d|ef.

The subtrees induced by different parts are vertiex disjoint.

The convex hulls of different parts are disjoint.

The convex hulls of different parts are disjoint. For *n* points in general positions in \mathbb{R}^k , the number of different affine splits is

$$\sum_{i=1}^k \binom{n-1}{i}.$$

A resolved balanced incomplete-block design,

- ABC|DEF|GHI,
- ADG|BEH|CFI,
- AEI|BFG|CDH,
- AFH|BDI|CEG.

[Bai17], Bailey, Relations among partitions, 2017.

Table of Contents

Partition System

Prom partition system to point configuration

${\color{black} 3}$ How to understand a set of $(0,\pm 1)$ -vectors

• Our results

Let $\pi = \pi_1 | \pi_2 | \dots | \pi_k$ be a partition of X.

Qian, Wu (SJTU)

Multibody system on discrete circle

G2R2, 2018 6 / 18

Let $\pi = \pi_1 | \pi_2 | \dots | \pi_k$ be a partition of X.

Definition

/X)

For
$$A \in \binom{X}{t}$$
, let
 $J_{\pi}(A) := \begin{cases} 1, & |\pi_i \cap A| \leq 1 \text{ for all } i, \\ 0, & \text{otherwise.} \end{cases}$
 $J_{\pi}^*(A) := \begin{cases} 1, & |\pi_i \cap A| \geq 1 \text{ for all } i, \\ 0, & \text{otherwise.} \end{cases}$

Both J_{π} and J_{π}^* are (0, 1)-functions on 2^X , which are also often viewed as functions on $\binom{X}{t}$. When k = t, J_{π} and J_{π}^* become equivalent. Let $\pi = \pi_1 | \pi_2 | \dots | \pi_k$ be an ordered partition of X.

Definition

For ordered set
$$a = (a_1, \ldots, a_t) \in X^{t\downarrow}$$
, let

 $G_{\pi}(a) = \begin{cases} 1, & \text{if } k = t, \exists \text{ even permutation } \sigma, a_i \in \pi_{\sigma(i)}, \\ -1, & \text{if } k = t, \exists \text{ odd permutation } \sigma, a_i \in \pi_{\sigma(i)}, \\ 0, & \text{otherwise.} \end{cases}$

By linear extension, G_{π} is viewed as a function on $\wedge^k F^X$, the *k*th exterior power of the linear space F^X over a field *F*.

Let $\pi = \pi_1 | \pi_2 | \dots | \pi_k$ be an ordered partition of X.

Definition

For ordered set
$$a = (a_1, \ldots, a_t) \in X^{t\downarrow}$$
, let

$$R_{\pi}(a) = egin{cases} 1, & ext{if } k = t, a_i \in \pi_i ext{ for all } i, \ 0, & ext{otherwise.} \end{cases}$$

By linear extension, R_{π} is viewed as a function on $(F^{\chi})^{k}$.

Geometric representation of partition systems

Via the several operators mentioned above, a system of partitions of a set X is represented by a point configuration consisting of $(0, \pm 1)$ -vectors in a linear space over \mathbb{R} or other fields.

Table of Contents

Partition System

Prom partition system to point configuration

\bigcirc How to understand a set of $(0,\pm 1)$ -vectors

• Our results

• Study the nonnegative linear combinations of *S*.

- Determine the face structure of the resulting cone.
- Especially, describe its extremal rays and facets.

• Study the nonnegative linear combinations of *S*.

- Determine the face structure of the resulting cone.
- Especially, describe its extremal rays and facets.
- Study the linear span of *S*.
 - Determine its dimension.
 - Construct some natural bases.
 - Find the change-of-basis formula (inversion formula).

• Study the nonnegative linear combinations of *S*.

- Determine the face structure of the resulting cone.
- Especially, describe its extremal rays and facets.
- Study the linear span of *S*.
 - Determine its dimension.
 - Construct some natural bases.
 - Find the change-of-basis formula (inversion formula).
- Study the integer linear combinations of S.
 - Calculate the covolume of the lattice.
- Many other ways, say tropical complex.

Table of Contents

Partition System

Prom partition system to point configuration

\bigcirc How to understand a set of $(0,\pm 1)$ -vectors

4 Our results

We only report some results with simple statements and without heavy notation.

Definition

• Let $S_{n,k}$ be the set of all circular k-partitions of \mathbb{Z}_n .

• Let
$$J_{n,k} = \{J_{\pi}: \pi \in S_{n,k}\}.$$

• Let $G_{n,k} = \{G_{\pi} : \pi \in S_{n,k}\}.$

Definition

• Let $S_{n,k}$ be the set of all circular k-partitions of \mathbb{Z}_n .

• Let
$$J_{n,k} = \{J_{\pi}: \pi \in S_{n,k}\}.$$

• Let
$$G_{n,k} = \{G_{\pi}: \pi \in S_{n,k}\}.$$

Results

- We determine all the $\binom{n}{k}$ extreme rays of Cone $J_{n,k}$.
- When k is even, we explicitly describe all the $\binom{n}{k}$ facets of Cone $J_{n,k}$.

The elements of Cone $J_{n,2}$ are known as Kalmanson metrics. Our facet description generalizes the classic characterization of Kalmanson metrics.

Kalmanson metric (Chepoi and Fichet, 1998)

A symmetric map d from $X \times X$ to \mathbb{R} is a Kalmanson metric if and only if there exists a circular ordering ξ of X such that

$$d(y, u) + d(z, v) \geq d(y, z) + d(u, v),$$

for all $u, v, y, z \in X$ such that the segments [y, u] and [z, v] are crossing diagonals of the circular ordering of X.

Example

The elements of $f \in \text{Cone } J_{n,4}$ are those nonnegative symmetric functions characterized by the inequalities

where $\{a_1, a_2, a_3, a_4\}$ runs through all elements of $\binom{\mathbb{Z}_n}{4}$.

Theorem

The dimension of the linear span of $G_{n,k}$ over a field F is always $\binom{n-1}{k-1}$.

Theorem

The dimension of the linear span of $J_{n,k}$ over a field F is

$$\begin{cases} \binom{n}{k} & \text{if } k \text{ is even and } \mathsf{Char} \, F \neq 2, \\ \binom{n-1}{k-1} & \text{otherwise.} \end{cases}$$

Let $i_1 < i_2 < \cdots < i_k$ be k positive integers no bigger than n. The ordered partition $i_1, i_1 + 1, \ldots, i_2 - 1 | i_2, \ldots, i_3 - 1 | \ldots | i_k, \ldots, n, 1, \ldots, i_1 - 1$ is known as a circular k-partition of \mathbb{Z}_n with rotation number one. Let $R_{n,k}$ be the set of all points R_{π} , where π runs through all circular k-partition of \mathbb{Z}_n with rotation number one.

Theorem

The dimension of the linear span of $R_{n,k}$ over a field F is

$$(k-1)\binom{n}{k}+\binom{n-1}{k-1}$$

Definition

The even lattice
$$D_{X,k}^{even}$$
 is defined to be
 $D_{X,k}^{even} := \left\{ f \in \mathbb{Z}^{\binom{X}{k}} : \sum_{c \in C} f(C \setminus \{c\}) \equiv 0 \pmod{2} \right.$
for all $C \in \binom{X}{k+1}$.

The integer linear span of $J_{n,k}$ is denoted as $\Gamma_{n,k}$.

G2R2, 2018 17 / 18

.

Definition

The even lattice
$$D_{X,k}^{even}$$
 is defined to be
 $D_{X,k}^{even} := \left\{ f \in \mathbb{Z}^{\binom{X}{k}} : \sum_{c \in C} f(C \setminus \{c\}) \equiv 0 \pmod{2} \right.$
for all $C \in \binom{X}{k+1}$.

The integer linear span of $J_{n,k}$ is denoted as $\Gamma_{n,k}$.

Theorem

The covolume of $D_{X,k}^{even}$ is always $2^{\binom{n-1}{k}}$. When k is even, it holds $\Gamma_{n,k} = D_{X,k}^{even}$. When k is odd, the covolume of $\Gamma_{n,k}$ in the linear span of $J_{n,k}$ is 1.

Reference

🔋 R. A. Bailey.

Relations among partitions, page 1-86.

London Mathematical Society Lecture Note Series. Cambridge University Press, 2017. doi:10.1017/9781108332699.002.

- David Bryant and Andreas Dress.
 Linearly independent split systems.
 European J. Combin., 28(6):1814–1831, 2007.
 doi:10.1016/j.ejc.2006.04.007.
- Victor Chepoi and Bernard Fichet.
 A note on circular decomposable metrics.
 Geom. Dedicata, 69(3):237–240, 1998.

Qian, Wu (SJTU)